3.1235 \(\int (a+b \tan (e+f x))^3 (c+d \tan (e+f x))^{3/2} \, dx\)

Optimal. Leaf size=256 \[ \frac{2 b \left (3 a^2-b^2\right ) (c+d \tan (e+f x))^{3/2}}{3 f}+\frac{2 \left (3 a^2 b c+a^3 d-3 a b^2 d-b^3 c\right ) \sqrt{c+d \tan (e+f x)}}{f}-\frac{4 b^2 (b c-8 a d) (c+d \tan (e+f x))^{5/2}}{35 d^2 f}+\frac{2 b^2 (a+b \tan (e+f x)) (c+d \tan (e+f x))^{5/2}}{7 d f}-\frac{(-b+i a)^3 (c+i d)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c+i d}}\right )}{f}+\frac{(b+i a)^3 (c-i d)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c-i d}}\right )}{f} \]

[Out]

((I*a + b)^3*(c - I*d)^(3/2)*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c - I*d]])/f - ((I*a - b)^3*(c + I*d)^(3/2)
*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c + I*d]])/f + (2*(3*a^2*b*c - b^3*c + a^3*d - 3*a*b^2*d)*Sqrt[c + d*Ta
n[e + f*x]])/f + (2*b*(3*a^2 - b^2)*(c + d*Tan[e + f*x])^(3/2))/(3*f) - (4*b^2*(b*c - 8*a*d)*(c + d*Tan[e + f*
x])^(5/2))/(35*d^2*f) + (2*b^2*(a + b*Tan[e + f*x])*(c + d*Tan[e + f*x])^(5/2))/(7*d*f)

________________________________________________________________________________________

Rubi [A]  time = 0.728881, antiderivative size = 256, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 7, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.259, Rules used = {3566, 3630, 3528, 3539, 3537, 63, 208} \[ \frac{2 b \left (3 a^2-b^2\right ) (c+d \tan (e+f x))^{3/2}}{3 f}+\frac{2 \left (3 a^2 b c+a^3 d-3 a b^2 d-b^3 c\right ) \sqrt{c+d \tan (e+f x)}}{f}-\frac{4 b^2 (b c-8 a d) (c+d \tan (e+f x))^{5/2}}{35 d^2 f}+\frac{2 b^2 (a+b \tan (e+f x)) (c+d \tan (e+f x))^{5/2}}{7 d f}-\frac{(-b+i a)^3 (c+i d)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c+i d}}\right )}{f}+\frac{(b+i a)^3 (c-i d)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c-i d}}\right )}{f} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Tan[e + f*x])^3*(c + d*Tan[e + f*x])^(3/2),x]

[Out]

((I*a + b)^3*(c - I*d)^(3/2)*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c - I*d]])/f - ((I*a - b)^3*(c + I*d)^(3/2)
*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c + I*d]])/f + (2*(3*a^2*b*c - b^3*c + a^3*d - 3*a*b^2*d)*Sqrt[c + d*Ta
n[e + f*x]])/f + (2*b*(3*a^2 - b^2)*(c + d*Tan[e + f*x])^(3/2))/(3*f) - (4*b^2*(b*c - 8*a*d)*(c + d*Tan[e + f*
x])^(5/2))/(35*d^2*f) + (2*b^2*(a + b*Tan[e + f*x])*(c + d*Tan[e + f*x])^(5/2))/(7*d*f)

Rule 3566

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(b^2*(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n + 1))/(d*f*(m + n - 1)), x] + Dist[1/(d*(m + n -
1)), Int[(a + b*Tan[e + f*x])^(m - 3)*(c + d*Tan[e + f*x])^n*Simp[a^3*d*(m + n - 1) - b^2*(b*c*(m - 2) + a*d*(
1 + n)) + b*d*(m + n - 1)*(3*a^2 - b^2)*Tan[e + f*x] - b^2*(b*c*(m - 2) - a*d*(3*m + 2*n - 4))*Tan[e + f*x]^2,
 x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
&& IntegerQ[2*m] && GtQ[m, 2] && (GeQ[n, -1] || IntegerQ[m]) &&  !(IGtQ[n, 2] && ( !IntegerQ[m] || (EqQ[c, 0]
&& NeQ[a, 0])))

Rule 3630

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(C*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Int[(a + b*Tan[e + f*x])
^m*Simp[A - C + B*Tan[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0]
&&  !LeQ[m, -1]

Rule 3528

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(d
*(a + b*Tan[e + f*x])^m)/(f*m), x] + Int[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0]

Rule 3539

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3537

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c*
d)/f, Subst[Int[(a + (b*x)/d)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int (a+b \tan (e+f x))^3 (c+d \tan (e+f x))^{3/2} \, dx &=\frac{2 b^2 (a+b \tan (e+f x)) (c+d \tan (e+f x))^{5/2}}{7 d f}+\frac{2 \int (c+d \tan (e+f x))^{3/2} \left (\frac{1}{2} \left (7 a^3 d-2 b^2 \left (b c+\frac{5 a d}{2}\right )\right )+\frac{7}{2} b \left (3 a^2-b^2\right ) d \tan (e+f x)-b^2 (b c-8 a d) \tan ^2(e+f x)\right ) \, dx}{7 d}\\ &=-\frac{4 b^2 (b c-8 a d) (c+d \tan (e+f x))^{5/2}}{35 d^2 f}+\frac{2 b^2 (a+b \tan (e+f x)) (c+d \tan (e+f x))^{5/2}}{7 d f}+\frac{2 \int (c+d \tan (e+f x))^{3/2} \left (\frac{7}{2} a \left (a^2-3 b^2\right ) d+\frac{7}{2} b \left (3 a^2-b^2\right ) d \tan (e+f x)\right ) \, dx}{7 d}\\ &=\frac{2 b \left (3 a^2-b^2\right ) (c+d \tan (e+f x))^{3/2}}{3 f}-\frac{4 b^2 (b c-8 a d) (c+d \tan (e+f x))^{5/2}}{35 d^2 f}+\frac{2 b^2 (a+b \tan (e+f x)) (c+d \tan (e+f x))^{5/2}}{7 d f}+\frac{2 \int \sqrt{c+d \tan (e+f x)} \left (\frac{7}{2} d \left (a^3 c-3 a b^2 c-3 a^2 b d+b^3 d\right )+\frac{7}{2} d \left (3 a^2 b c-b^3 c+a^3 d-3 a b^2 d\right ) \tan (e+f x)\right ) \, dx}{7 d}\\ &=\frac{2 \left (3 a^2 b c-b^3 c+a^3 d-3 a b^2 d\right ) \sqrt{c+d \tan (e+f x)}}{f}+\frac{2 b \left (3 a^2-b^2\right ) (c+d \tan (e+f x))^{3/2}}{3 f}-\frac{4 b^2 (b c-8 a d) (c+d \tan (e+f x))^{5/2}}{35 d^2 f}+\frac{2 b^2 (a+b \tan (e+f x)) (c+d \tan (e+f x))^{5/2}}{7 d f}+\frac{2 \int \frac{-\frac{7}{2} d \left (6 a^2 b c d-2 b^3 c d-a^3 \left (c^2-d^2\right )+3 a b^2 \left (c^2-d^2\right )\right )+\frac{7}{2} d \left (2 a^3 c d-6 a b^2 c d+3 a^2 b \left (c^2-d^2\right )-b^3 \left (c^2-d^2\right )\right ) \tan (e+f x)}{\sqrt{c+d \tan (e+f x)}} \, dx}{7 d}\\ &=\frac{2 \left (3 a^2 b c-b^3 c+a^3 d-3 a b^2 d\right ) \sqrt{c+d \tan (e+f x)}}{f}+\frac{2 b \left (3 a^2-b^2\right ) (c+d \tan (e+f x))^{3/2}}{3 f}-\frac{4 b^2 (b c-8 a d) (c+d \tan (e+f x))^{5/2}}{35 d^2 f}+\frac{2 b^2 (a+b \tan (e+f x)) (c+d \tan (e+f x))^{5/2}}{7 d f}+\frac{1}{2} \left ((a-i b)^3 (c-i d)^2\right ) \int \frac{1+i \tan (e+f x)}{\sqrt{c+d \tan (e+f x)}} \, dx+\frac{1}{2} \left ((a+i b)^3 (c+i d)^2\right ) \int \frac{1-i \tan (e+f x)}{\sqrt{c+d \tan (e+f x)}} \, dx\\ &=\frac{2 \left (3 a^2 b c-b^3 c+a^3 d-3 a b^2 d\right ) \sqrt{c+d \tan (e+f x)}}{f}+\frac{2 b \left (3 a^2-b^2\right ) (c+d \tan (e+f x))^{3/2}}{3 f}-\frac{4 b^2 (b c-8 a d) (c+d \tan (e+f x))^{5/2}}{35 d^2 f}+\frac{2 b^2 (a+b \tan (e+f x)) (c+d \tan (e+f x))^{5/2}}{7 d f}-\frac{\left ((i a+b)^3 (c-i d)^2\right ) \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{c-i d x}} \, dx,x,i \tan (e+f x)\right )}{2 f}+\frac{\left ((i a-b)^3 (c+i d)^2\right ) \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{c+i d x}} \, dx,x,-i \tan (e+f x)\right )}{2 f}\\ &=\frac{2 \left (3 a^2 b c-b^3 c+a^3 d-3 a b^2 d\right ) \sqrt{c+d \tan (e+f x)}}{f}+\frac{2 b \left (3 a^2-b^2\right ) (c+d \tan (e+f x))^{3/2}}{3 f}-\frac{4 b^2 (b c-8 a d) (c+d \tan (e+f x))^{5/2}}{35 d^2 f}+\frac{2 b^2 (a+b \tan (e+f x)) (c+d \tan (e+f x))^{5/2}}{7 d f}-\frac{\left ((a-i b)^3 (c-i d)^2\right ) \operatorname{Subst}\left (\int \frac{1}{-1-\frac{i c}{d}+\frac{i x^2}{d}} \, dx,x,\sqrt{c+d \tan (e+f x)}\right )}{d f}-\frac{\left ((a+i b)^3 (c+i d)^2\right ) \operatorname{Subst}\left (\int \frac{1}{-1+\frac{i c}{d}-\frac{i x^2}{d}} \, dx,x,\sqrt{c+d \tan (e+f x)}\right )}{d f}\\ &=\frac{(i a+b)^3 (c-i d)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c-i d}}\right )}{f}-\frac{(i a-b)^3 (c+i d)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c+i d}}\right )}{f}+\frac{2 \left (3 a^2 b c-b^3 c+a^3 d-3 a b^2 d\right ) \sqrt{c+d \tan (e+f x)}}{f}+\frac{2 b \left (3 a^2-b^2\right ) (c+d \tan (e+f x))^{3/2}}{3 f}-\frac{4 b^2 (b c-8 a d) (c+d \tan (e+f x))^{5/2}}{35 d^2 f}+\frac{2 b^2 (a+b \tan (e+f x)) (c+d \tan (e+f x))^{5/2}}{7 d f}\\ \end{align*}

Mathematica [A]  time = 3.20929, size = 247, normalized size = 0.96 \[ \frac{\frac{4 b^2 (8 a d-b c) (c+d \tan (e+f x))^{5/2}}{d}+10 b^2 (a+b \tan (e+f x)) (c+d \tan (e+f x))^{5/2}+\frac{35}{3} d (-b+i a)^3 \left (\sqrt{c+d \tan (e+f x)} (4 c+d \tan (e+f x)+3 i d)-3 (c+i d)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c+i d}}\right )\right )-\frac{35}{3} d (b+i a)^3 \left (\sqrt{c+d \tan (e+f x)} (4 c+d \tan (e+f x)-3 i d)-3 (c-i d)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c+d \tan (e+f x)}}{\sqrt{c-i d}}\right )\right )}{35 d f} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Tan[e + f*x])^3*(c + d*Tan[e + f*x])^(3/2),x]

[Out]

((4*b^2*(-(b*c) + 8*a*d)*(c + d*Tan[e + f*x])^(5/2))/d + 10*b^2*(a + b*Tan[e + f*x])*(c + d*Tan[e + f*x])^(5/2
) - (35*(I*a + b)^3*d*(-3*(c - I*d)^(3/2)*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c - I*d]] + Sqrt[c + d*Tan[e +
 f*x]]*(4*c - (3*I)*d + d*Tan[e + f*x])))/3 + (35*(I*a - b)^3*d*(-3*(c + I*d)^(3/2)*ArcTanh[Sqrt[c + d*Tan[e +
 f*x]]/Sqrt[c + I*d]] + Sqrt[c + d*Tan[e + f*x]]*(4*c + (3*I)*d + d*Tan[e + f*x])))/3)/(35*d*f)

________________________________________________________________________________________

Maple [B]  time = 0.069, size = 3518, normalized size = 13.7 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*tan(f*x+e))^3*(c+d*tan(f*x+e))^(3/2),x)

[Out]

-3/f*d/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(c^2+d
^2)^(1/2)-2*c)^(1/2))*(c^2+d^2)^(1/2)*a*b^2+1/4/f*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)-d*ta
n(f*x+e)-c-(c^2+d^2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)*b^3-2/3/f*(c+d*tan(f*x+e))^(3/2)*b^3
-1/4/f/d*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^2)^(1/2))*(2*(c^2+d^2)^
(1/2)+2*c)^(1/2)*a^3*c^2-3/f*d^2/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(
1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*a^2*b+1/f*d/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)
^(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*(c^2+d^2)^(1/2)*a^3+3/4/f*d*ln(d*ta
n(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)
*a*b^2-3/4/f*d*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^2)^(1/2))*(2*(c^2
+d^2)^(1/2)+2*c)^(1/2)*a*b^2-2/f*d/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*
tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*a^3*c-1/f/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)
^(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*(c^2+d^2)^(1/2)*b^3*c+1/f/(2*(c^2+d
^2)^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(
1/2))*(c^2+d^2)^(1/2)*b^3*c+3/f/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1
/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*a^2*b*c^2+3/2/f*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*
c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*a^2*b*c+3/4/f*ln(d*tan(f*x+e)+c+(c+d*ta
n(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)*a
^2*b-3/2/f*ln(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))*(2*(c^2+d^2
)^(1/2)+2*c)^(1/2)*a^2*b*c-3/4/f*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d
^2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)*a^2*b-3/f/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c
^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*a^2*b*c^2+2/f*(c+d*tan(f*x+e
))^(3/2)*a^2*b+2/f*d*a^3*(c+d*tan(f*x+e))^(1/2)+2/7/f/d^2*b^3*(c+d*tan(f*x+e))^(7/2)-2/f*b^3*c*(c+d*tan(f*x+e)
)^(1/2)+3/4/f/d*ln(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))*(2*(c^
2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)*a*b^2*c-3/4/f/d*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2
)-d*tan(f*x+e)-c-(c^2+d^2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)*a*b^2*c+1/4/f/d*ln((c+d*tan(f*
x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d
^2)^(1/2)*a^3*c-1/4/f/d*ln(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2)
)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)*a^3*c+3/4/f/d*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c
)^(1/2)-d*tan(f*x+e)-c-(c^2+d^2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*a*b^2*c^2-1/2/f*ln((c+d*tan(f*x+e))^(1/2
)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*b^3*c-2/5/f/d^2*
(c+d*tan(f*x+e))^(5/2)*b^3*c+1/f/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*ta
n(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*b^3*c^2+6/f*a^2*b*c*(c+d*tan(f*x+e))^(1/2)-1/f/(2*(c^2+d^2)^(1
/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*
b^3*c^2-1/4/f*ln(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))*(2*(c^2+
d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)*b^3+1/2/f*ln(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*
c)^(1/2)+(c^2+d^2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*b^3*c-6/f*d*a*b^2*(c+d*tan(f*x+e))^(1/2)+6/5/f/d*(c+d*
tan(f*x+e))^(5/2)*a*b^2+1/4/f*d*ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^
2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*a^3-1/4/f*d*ln(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2
)+2*c)^(1/2)+(c^2+d^2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*a^3-1/f*d^2/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((
(2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*b^3+1/f*d^2/(2*(c^2+d^2
)^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/
2))*b^3-1/f*d/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2
*(c^2+d^2)^(1/2)-2*c)^(1/2))*(c^2+d^2)^(1/2)*a^3+1/4/f/d*ln(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)
^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*a^3*c^2+2/f*d/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*a
rctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*a^3*c+3/f*d^2/(2
*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)
-2*c)^(1/2))*a^2*b-6/f*d/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c
)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*a*b^2*c-3/4/f/d*ln(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^
(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*a*b^2*c^2+6/f*d/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*
arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*a*b^2*c+3/f/(2*
(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan(((2*(c^2+d^2)^(1/2)+2*c)^(1/2)-2*(c+d*tan(f*x+e))^(1/2))/(2*(c^2+d^2)^(1/2)-
2*c)^(1/2))*(c^2+d^2)^(1/2)*a^2*b*c-3/f/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2
+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*(c^2+d^2)^(1/2)*a^2*b*c+3/f*d/(2*(c^2+d^2)^(1/2)-2*c)^(
1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*(c^2+d^2)^
(1/2)*a*b^2

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))^3*(c+d*tan(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))^3*(c+d*tan(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (a + b \tan{\left (e + f x \right )}\right )^{3} \left (c + d \tan{\left (e + f x \right )}\right )^{\frac{3}{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))**3*(c+d*tan(f*x+e))**(3/2),x)

[Out]

Integral((a + b*tan(e + f*x))**3*(c + d*tan(e + f*x))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \tan \left (f x + e\right ) + a\right )}^{3}{\left (d \tan \left (f x + e\right ) + c\right )}^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))^3*(c+d*tan(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate((b*tan(f*x + e) + a)^3*(d*tan(f*x + e) + c)^(3/2), x)